
Polarisation 8.6

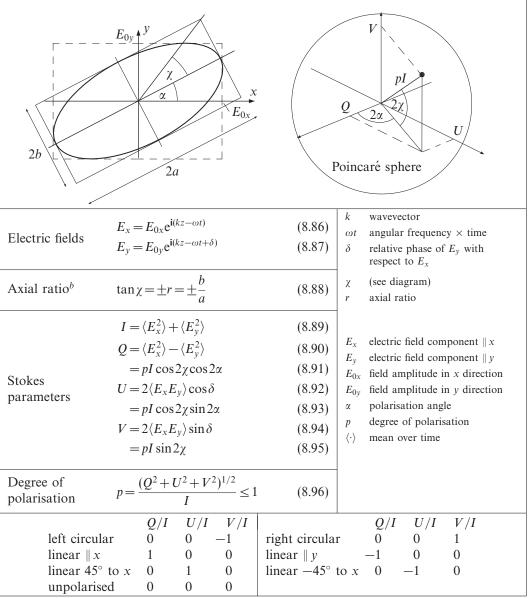
Elliptical polarisation^a

E	
E	electric field
k	wavevector
Z	propagation axis
ωt	angular frequency time
E_{0x}	x amplitude of E
E_{0y}	y amplitude of E
δ	relative phase of E
	with respect to E_x
α	polarisation angle
e	ellipticity
a	semi-major axis
b	semi-minor axis
$I(\theta)$	transmitted intensi
I_0	incident intensity
θ	polariser-analyser angle
	k z z ωt E_{0x} E_{0y} δ α

Jones vectors and matrices

Normalised electric field ^a	$\boldsymbol{E} = \begin{pmatrix} E_x \\ E_y \end{pmatrix}; \boldsymbol{E} = 1$	(8.84)	E electric field E_x x component of E E_y y component of E
Example vectors:	$E_x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $E_{45} =$ $E_r = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -\mathbf{i} \end{pmatrix}$ $E_l =$	$ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} $ $ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \mathbf{i} \end{pmatrix} $	E_{45} 45° to x axis $E_{\rm r}$ right-hand circular $E_{\rm l}$ left-hand circular
Jones matrix	$E_{\rm t} = \mathbf{A}E_{\rm i}$	(8.85)	$egin{array}{ll} E_{ m t} & { m transmitted \ vector} \\ E_{ m i} & { m incident \ vector} \\ { m A} & { m Jones \ matrix} \\ \end{array}$
Example matrice	es:		
Linear polariser	$\parallel x \qquad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	Linear polariser	$y = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
Linear polariser	at 45° $\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	Linear polariser at	$t - 45^{\circ} \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$
Right circular p	olariser $\frac{1}{2} \begin{pmatrix} 1 & \mathbf{i} \\ -\mathbf{i} & 1 \end{pmatrix}$	Left circular polar	riser $\frac{1}{2} \begin{pmatrix} 1 & -\mathbf{i} \\ \mathbf{i} & 1 \end{pmatrix}$
$\lambda/4$ plate (fast	(0 1)	$\lambda/4$ plate (fast $\perp x$	$e^{\mathbf{i}\pi/4} \begin{pmatrix} 1 & 0 \\ 0 & -\mathbf{i} \end{pmatrix}$

^aKnown as the "normalised Jones vector."



^aSee the introduction (page 161) for a discussion of sign and handedness conventions. ^bAngle between ellipse major axis and x axis. Sometimes the polarisation angle is defined as $\pi/2 - \alpha$.

^cThis is one of several definitions for ellipticity.

 $[^]d$ Transmission through skewed polarisers for unpolarised incident light.

Stokes parameters^a

^aUsing the convention that right-handed circular polarisation corresponds to a clockwise rotation of the electric field in a given plane when looking towards the source. The propagation direction in the diagram is out of the plane. The parameters I, Q, U, and V are sometimes denoted s_0 , s_1 , s_2 , and s_3 , and other nomenclatures exist. There is no generally accepted definition – often the parameters are scaled to be dimensionless, with $s_0 = 1$, or to represent power flux through a plane \bot the beam, i.e., $I = (\langle E_x^2 \rangle + \langle E_y^2 \rangle)/Z_0$ etc., where Z_0 is the impedance of free space. ^bThe axial ratio is positive for right-handed polarisation and negative for left-handed polarisation using our definitions.

